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A Nonparametric Method for Estimating
Interaction Effect of Age and Period on

Mortality
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In this paper we introduce a new model and develop an estimation strategy to analyze mortality data.
The model we dealt with has the speclﬁc structure E[log qU] =pto+ B; + py subject to the linear

restrictions 2 alo% = 2 By = 2 pylo} = E Py =

0 for any i and j; here, g;; denotes the mortality for the

Jjth period category and ith age category, 1 denotes the overall mean, a; denotes the ith age effect in
antichronological order, B; the jth period effect, p; the general interaction effect; and o% is the common
error variance of log g for the ith age group. We propose a combined technique of ANOVA and nonpar-
ametric smoothing for estimating these parameters. The methods described are illustrated by mortality
data on rectum cancer in Japanese males and females between 1950-1986.

Introduction

An age-period-cohort (APC) model or some modifi-
cation of the model has often been used for analyzing
mortality data. If the model is fitted correctly, then it
yields useful summaries of the data in terms of param-
eters in the model. However, there is a well-known
difficulty in estimating parameters, because of the APC
model lacking identifiability (1—4). Setting arbitrary
constraint on the parameters of the model is required
to determine a unique estimate of the parameters.

To date various constraints have been proposed by
many researchers (5). Holford (2) proposed that ana-
lysts concentrate their discussions only on the estimable
functions such as the curvature component of each ef-
fect. Tango (4) analyzed Japanese mortality and de-
tected interesting curvatures in the cohort effect, and
Hirotsu (6) introduced a class of estimable components
and discussed how to detect a systematic change in co-
hort effects without the class suffering from a short-
term fluctuation in the context of the one-way analysis
of variance. This paper introduces a new age-period
model, which is free from an identifiability problem and
proposes a method of model fitting to APC data through
the nonparametric smoothing technique.
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Statistical Model

We derive a new model by replacing the cohort-effect
term in the ordinary APC model by a term of general
age X period interaction. Thus, our model is expressed
as

Model I: log g; = n + a; + B; + p; + €,
subject to the restrictions

forj=1,...,p,i=1,..., a here, g; denotes the
observed mortality rate for the jth period category and
the ith age category, w is the overall mean, a; is the
fixed effect of the ith age category, B; is the fixed effect
of the jth period category, and p;; is the fixed interaction
effect associated with the ith age category and the jth
period category. The only random component is e,
which is assumed to be independently distributed with
mean Ele;] = 0 and variance

When there exist parameters 6 and & such that p; =
0,¢; for all < and j, Model I becomes the APC model
attributable to James and Segal (?) with no cohort-effect
term. Furthermore, in case of no age X period inter-
action, Model I is reduced to a popular two-factor age-
period model (5). In this paper we call the reduced model
age-period-main-effect mode, which is expressed as

Model IT:  log gy = n + a; + B; + €

The advantage of using Model I is that various types
of age X period interaction, including the so-called co-
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FIGURE 1. Age-specific plots of logarithmic mortality rates per 100,000 from malignant neoplasms of the rectum, rectosigmoid junction, and
anus in Japanese males between 1950 and 1986.
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FIGURE 2. Age-specific plots of logarithmic mortality rates per 100,000 from malignant neoplasms of the rectum, rectosigmoid junction, and
anus in Japanese females between 1950 and 1986.

hort effect, can be incorporated without suffering from I can be estimated through ANOVA with some as-
an identifiability problem. sumptions on the error distribution. For fitting mor-
tality data, the Poisson error model has been the most

. . popular and frequently used model; however, much
Estimation of Parameters larger deviance than degrees of freedom has been often

The parameters «; and ; of the main effects in Mode found, even for the full model. This deviance indicates
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FIGURE 3. Sex-age specific plots of the square root of mean square error.
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FIGURE 4. Sex-age specific plots of the estimated age-effect from Model I.

a poor fit to the Poisson distribution (2). In such cases,
this overdispersion is referred to as extra-Poisson var-
iation.

Breslow (8) proposed a general method for analyzing
a data set that has extra-Poisson variation. To avoid
the problem from extra-Poisson variation, we use a
least-squares technique that is not based on a Poisson
error model but on a more relaxed model. For many

causes of death as seen in Figures 1 and 2, larger fluc-
tuations of (logarithm of) mortality are observed in
younger age groups mainly because of the Poisson var-
iability in the number of deaths. (In fact, when the
number of deaths are distributed exactly under the Pois-
son law, the logarithmic value of the mortality rate has
the asymptotic variance, since it is the reciprocal num-
ber of the expected number of deaths. This property
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FIGURE 6. Age-period cell plots of residuals from age-period-main-
effect model (Model II). In these plots, fully blackened represents
A; = antilog(r;;) = 1.2, double shaded represents 1.1 < A; < 1.2,
single shaded represents 1.05 < A; < 1.1, dotted represents 0.95
< Ay < 1.05, and open represents 0.95, for each (i,5) cell.

will be referred to as Poisson variability in this paper.)
Therefore, to obtain highly efficient estimates, we use a
weighted least-squares technique rather than the ordi-
nary one in estimating unknown parameters in Model I.
If the weights that are proportional to the reciprocal num-
bers of of are adopted, the least-square solution is chosen
to minimize the weighted residual sum of squares,

2 W) D Yy - — o — B — py),
i Fj
where Y;; = logg;,j=1,...,p,i1=1,..., a. If the

values of variances o5 (i = 1,..., p) are known, the
solution ({, a*, B*) could be given by

Lk = Y*
*’f=7l—f/*., 1=1,...,a,
Br =Y*; - Y*.,, j=1,...,p, 2

Sex-age specific plots of estimated period-effect froom Model I.

where Y;.= p~' 2 Y, }-’*.j = 2 c¥Yy, Yx. = p!
Jj %

3 ¢¥3 Yy, and ¢t = {0¥ 3 o} . Note that the solution
i Jj =1

(p*, &* and B*) given by Eq. (2) will be also derived
from minimizing the weighted residual sum of squares
from Model II.

Z (1/0%) ; (Yij I T Bj)z,

i

under the restriction of Eq. (1).

When o4 is unknown, as in the ordinary situation,
substituting a suitable estimate § for the unknown pa-
rameter o} in the weights c¥, we deduce the approxi-
mate least square estimates of p, , and B as follows

1

p=Y.,,

&=Y.-Y. i=1,...,a,

B,=Y,-Y. j=1...,p, ®)
where i’.j = %ciYij, Y. = p“?ci ?Yij, and ¢; =

(7 2 )N
i=1
As for s2, one possible choice is

p-1

s? = 2/{3(p — 2)} - ;2 {Yy - 124, + Yy ) @

[See Gaser et al. (9) or Ohtaki (10)].

In a situation where a smooth trend in age (or period)
effect can be assumed, smoothing the sequence of {a;}
(or {Bf}) over 1 (or j) may yield a more plausible estimate

of {a} (or {B;}).
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FIGURE 7. Residual plots from age-period-main-effect model (Model II) and smoothed lines.

(MALE)

B B
1950 1980 1950 1980
PERTIOD

FIGure 8. Cell plots of estimated age X period interaction effect.
In these plots, fully blackened represents A;; = antilog(p;;) = 1.2,
double shaded represents 1.1 < A;; < 1.2, single shaded represents
1.05 < A; < 1.1, dotted represents 0.95 < A; < 1.05, and open
represents A; < 0.95, for each (4,7) cell.

On the other hand, the estimates of interaction effect,
Py, in Model I are not available through ordinary
ANOV A owing to no multiple observations in APC data.
(Recently, Hirotsu (6) proposed an exceptional ANOVA
technique to estimate the interaction effect.) Our ap-
proach to this problem is to use the nonparametric
smoothing technique. Note that the residual from the
age-period-main-effect model,

— & — By ®)
can be approximately decomposed into two components
p; and s;—the interaction effect and the random com-

ponents, respectively. Assuming that p; is a smooth
function of j for each i, we estimate {p;) = 1,..., p}

ry =Yy — i
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FIGURE 9. Cell plots of residuals from Model I. In these plots, fully
blackened represents A;; = antilog(€;;) = 1.2, double shaded rep-
resents 1.1 < A; < 1.2, single shaded represents 1.05 < A; <
1.1, dotted represents 0.95 < A;; < 1.05, and open represents A;
< 0.95, for each (3,7) cell.

through smoothing the sequence of residuals {rylj =
1,..., p} for each i = 1,..., a. In smoothing such
sequence data, a locally linear smoother, for example,
the Lowess attributable to Cleveland (11), will work
effectively.

lllustration of Data Analysis

We now illustrate our method using real mortality
data. The data concerns rectum cancer, more precisely,
malignant neoplasm of the rectum, rectosigmoid junc-
tion, and anus. Mortality rates in Japanese males and
females were obtained from the Japanese Vital Statis-
tics List published from 1950 to 1986 (12). Figures 1
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FIGURE 10. Age-specific plots of square root of mean square error and predicted values from Poisson variability on logarithmic mortality
rates fitted to malignant neoplasms of rectum, rectosigmoid junction, and anus in Japanese males between 1950 and 1986.
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FIGURE 11.

Age-specific plots of square root of mean square error and predicted values from Poisson variability on logarithmic mortality

rates fitted to malignant neoplasms of rectum, rectosigmoid junction, and anus in Japanese females between 1950 and 1986.

and 2 give the age-specific plots of the logarithmic mor-
tality rates per 100,000 for the male and female data
set, respectively. These rates are based on 5-year age
intervals and single-year period intervals. Figure 3
shows the sex-age-specific plots of the square root of s
calculated from Eq. (4). Briefly, a common pattern is

observed in the plots for both sexes; the values of s for
the younger age groups are larger than those for middle
or advanced age groups. This trend is surely the result
of Poisson variability in the observed number of deaths.
Figures 4 and 5 give the plots of the estimated age
effects &; and period effects B; computed from Eq. (3).
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set, respectively. These rates are based on 5-year age
intervals and single-year period intervals. Figure 3
shows the sex-age-specific plots of the square root of s?
calculated from Eq. (4). Briefly, a common pattern is
observed in the plots for both sexes; the values of % for
the younger age groups are larger than those for middle
or advanced age groups. This trend is surely the result
of Poisson variability in the observed number of deaths.
Figures 4 and 5 give the plots of the estimated age
effects a; and period effects ; computed from Eq. (3).
According to the age-effect plots for both sexes, we can
see that the effect increases with age and there is no
noticeable difference between the effects for males and
females. On the other hand, we can see from the period-
effect plots that there is a clear peak around 1970s for
females, while no such peak exists for males. A two-
dimensional plot is given to visualize the residual from
the age-period-main-effect model in Figure 6, which
uses a contrast to represent the value of r; computed
from Eq. (5) for each (i,5) cell; The rule of making a
contrast for the (¢,j) cell in this plot is as follows.
According to each computed value of A; = an-
tilog(r;), we produced a cell-pattern: “fully black-

ened” if 1.2 < A;;, “double shaded” if 1.1 < A; < 1.2,

“single shaded” if 1.05 < A; < 1.1, “dotted” if 0.95

< A; < 1.05, “whitened” if A; < 0.96, fori = 1,...,

a;j=1...,p.

A brief outline on the structural age X period inter-
action pattern can be seen in this plot. To remove the
noisy fluctuation in residuals we apply a nonparametric
smoothing to sequence of {rylj = 1,..., p} for each i
= 1,..., a. Figure 7 illustrates the result of nonpar-
ametric smoothing for the female data of two groups:
40 to 44 years of age and 75 to 79 years of age. After
the smoothing step, we obtained a clearer interaction
pattern, as shown in Figure 8, where the same plotting
rule seen in Figure 6 was adopted in making the con-
trast, replacing r;; by the smoothed value, p;;. In Figure
8 we can detect two different kinds of age x period
interaction—one seems to be related to cohort effect
and the other does not. The former is a noticeable clus-
ter of high interaction around the births cohort who
were born in 1960s. It is interesting that a strong re-
semblance exists between the estimated age x period
interaction pattern for males and females, although the
corresponding period-effect patterns are remarkably
different, as shown in Figure 5. Figure 9 shows a plot
of residuals €;; = Ty — pi, where the same plotting rule
is adopted as in Figure 6, replacing r; by €;. No lack
of fit of Model I is suggested from this plot. To make a
further inspection of goodness of fit from this plot we
computed the mean square error from Model I for each
age group model. Figures 10 and 11 show the age-spe-
cific plots of square root of these (approximate) mean
square errors and the predicted values from Poisson
variability for the data on males and females, respec-
tively. We can see from these plots that there is good
agreement between observed value and the predicted

one from Poisson variability, suggesting that no addi-
tional variation beyond Poisson variability exists in
these data.

Additional Remarks

We adopt Model I as the main effect of combining age
and period rather than that of age and cohort. One of
the reasons why we choose the age-period-main-effect
model is that the model is easier to handle than the age-
cohort-main-effect model in parameter estimation. For
example, since a limited amount of mortality data are
available for extremely old or new cohorts, some treat-
ment of missing values is inevitable when the age-co-
hort-main-effect model is adopted; such treatment is not
required when the age-period-main-effect model is
used. A more essential reason in our choice lies in our
belief that recent improvements in medical or public
health care, such as advances in developing effective
medicines and introducing screening programs, are
equally effective over all age groups. For such situa-
tions, we suppose that the age-period-main-effect model
is more suitable than the age-cohort-main-effect model
in describing mortality rates.
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valuable comments.
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